Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1183668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334356

RESUMO

Background: Melanoma is a lethal skin cancer, and the risk of developing it is increased by exposure to ultraviolet (UV) radiation. The production of cytokines such as interleukin-15 (IL-15), induced by the exposure of skin cells to UV rays, could also promote melanoma development. The aim of this study is to investigate the possible role of Interleukin-15/Interleukin-15 Receptor α (IL-15/IL-15Rα) complexes in melanoma development. Methods: The expression of IL-15/IL-15Rα complexes by melanoma cells was evaluated both ex vivo and in vitro by tissue microarray, PCR, and flow cytometry. The presence of the soluble complex (sIL-15/IL-15Rα) in the plasma of metastatic melanoma patients was detected using an ELISA assay. Subsequently, we investigated the impact of natural killer (NK) cell activation after rIL-2 starvation followed by exposure to the sIL-15/IL-15Rα complex. Finally, by analyzing public datasets, we studied the correlation between IL-15 and IL-15Rα expressions and melanoma stage, NK and T-cell markers, and overall survival (OS). Results: Analysis of a melanoma tissue microarray shows a significant increase in the number of IL-15+ tumor cells from the benign nevi to metastatic melanoma stages. Metastatic melanoma cell lines express a phorbol-12-myristate-13-acetate (PMA)-cleavable membrane-bound IL-15 (mbIL-15), whereas cultures from primary melanomas express a PMA-resistant isoform. Further analysis revealed that 26% of metastatic patients present with consistently high plasmatic levels of sIL-15/IL-15Rα. When the recombinant soluble human IL-15/IL-15Rα complex is added to briefly starved rIL-2-expanded NK cells, these cells exhibit strongly reduced proliferation and levels of cytotoxic activity against K-562 and NALM-18 target cells. The analysis of public gene expression datasets revealed that high IL-15 and IL-15Rα intra-tumoral production correlates with the high levels of expression of CD5+ and NKp46+ (T and NK markers) and significantly correlates with a better OS in stages II and III, but not in stage IV. Conclusions: Membrane-bound and secreted IL-15/IL-15Rα complexes are continuously present during progression in melanoma. It is notable that, although IL-15/IL-15Rα initially promoted the production of cytotoxic T and NK cells, at stage IV promotion of the development of anergic and dysfunctional cytotoxic NK cells was observed. In a subgroup of melanoma metastatic patients, the continuous secretion of high amounts of the soluble complex could represent a novel NK cell immune escape mechanism.


Assuntos
Antineoplásicos , Melanoma , Humanos , Linhagem Celular Tumoral , Interleucina-15/metabolismo , Subunidade alfa de Receptor de Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Células Matadoras Naturais , Melanoma/metabolismo
2.
Oncoimmunology ; 12(1): 2221081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304055

RESUMO

Natural Killer (NK) cells are important components of the immune system in the defense against tumor growth and metastasis. They release exosomes containing proteins and nucleic acids, including microRNAs (miRNAs). NK-derived exosomes play a role in the anti-tumor NK cell function since they are able to recognize and kill cancer cells. However, the involvement of exosomal miRNAs in the function of NK exosomes is poorly understood. In this study, we explored the miRNA content of NK exosomes by microarray as compared to their cellular counterparts. The expression of selected miRNAs and lytic potential of NK exosomes against childhood B acute lymphoblastic leukemia cells after co-cultures with pancreatic cancer cells were also evaluated. We identified a small subset of miRNAs, including miR-16-5p, miR-342-3p, miR-24-3p, miR-92a-3p and let-7b-5p that is highly expressed in NK exosomes. Moreover, we provide evidence that NK exosomes efficiently increase let-7b-5p expression in pancreatic cancer cells and induce inhibition of cell proliferation by targeting the cell cycle regulator CDK6. Let-7b-5p transfer by NK exosomes could represent a novel mechanism by which NK cells counteract tumor growth. However, both cytolytic activity and miRNA content of NK exosomes were reduced upon co-culture with pancreatic cancer cells. Alteration in the miRNA cargo of NK exosomes, together with their reduced cytotoxic activity, could represent another strategy exerted by cancer to evade the immune response. Our study provides new information on the molecular mechanisms used by NK exosomes to exert anti-tumor-activity and offers new clues to integrate cancer treatments with NK exosomes.


Assuntos
Exossomos , MicroRNAs , Neoplasias Pancreáticas , Humanos , Criança , Exossomos/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Células Matadoras Naturais , Neoplasias Pancreáticas
3.
Int J Cancer ; 152(8): 1698-1706, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468179

RESUMO

NK cells represent key players capable of driving antitumor immune responses. However, the potent immunosuppressive activity of the tumor microenvironment (TME) may impair their effector function. Here, we strengthen the importance of metabolic interactions between NK cells and TME and propose metabolic dysfunction as one of the major mechanisms behind NK failure in cancer treatment. In particular, we described that TME has a direct negative impact on NK cell function by disrupting their mitochondrial integrity and function in pediatric and adult patients with primary and metastatic cancer. Our results will help to design new strategies aimed at increasing the NK cell antitumor efficacy by their metabolic reprogramming. In this regard, we reveal an unprecedented role of IL15 in the metabolic reprogramming of NK cells enhancing their antitumor functions. IL15 prevents the inhibitory effect of soluble factors present in TME and restores both the metabolic characteristics and the effector function of NK cells inhibited by exposure to malignant pleural fluid. Thus, we propose here that IL15 may be exploited as a new strategy to metabolically reprogram NK cells with the aim of increasing the efficacy of NK-based immunotherapy in a wide range of currently refractory adult and pediatric solid tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Adulto , Humanos , Criança , Interleucina-15/metabolismo , Células Matadoras Naturais , Neoplasias/metabolismo , Imunoterapia/métodos
4.
Cancer Immunol Immunother ; 72(6): 1417-1428, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36451048

RESUMO

Natural killer (NK) cells are cytotoxic lymphoid cells that play a key role in defenses against tumors. However, their function may be severely impaired in patients with pancreatic adenocarcinoma (PA). Indeed, PA cells release soluble factors, thereby generating an immunosuppressive environment that dysregulates NK-cell cytolytic function and favors tumor immune evasion. Here, we analyzed the interactions between NK and PA cells using the PANC-1 and CAPAN-1 cell lines derived from a ductal PA and metastatic lesion, respectively. Metastatic and nonmetastatic cell lines were both able to impair NK cytolytic activity. An analysis of the effect of NK cells and NK-cell-derived exosomes revealed substantial differences between the two cell lines. Thus, NK cells displayed higher cytotoxicity against nonmetastatic PA cells than metastatic PA cells in both 2D cultures and in a 3D extracellular matrix cell system. In addition, NK-derived exosomes could penetrate only PANC-1 spheroids and induce cell killing. Remarkably, when PANC-1 cells were exposed to NK-derived soluble factors, they displayed substantial changes in the expression of genes involved in epithelial-to-mesenchymal transition (EMT) and acquired resistance to NK-mediated cytolysis. These results, together with their correlation with poor clinical outcomes in PA patients, suggest that the induction of resistance to cytolysis upon exposure to NK-derived soluble factors could reflect the occurrence of EMT in tumor cells. Our data indicate that a deeper investigation of the interaction between NK cells and tumor cells may be crucial for immunotherapy, possibly improving the outcome of PA treatment by targeting critical steps of NK-tumor cell crosstalk.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/patologia , Neoplasias Pancreáticas/patologia , Células Matadoras Naturais , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Pancreáticas
5.
Semin Immunol ; 61-64: 101668, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36370673

RESUMO

Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Imunidade Inata , Linfócitos/patologia , Microambiente Tumoral
6.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069127

RESUMO

Natural killer (NK) cells play a key role in the control of cancer development, progression and metastatic dissemination. However, tumor cells develop an array of strategies capable of impairing the activation and function of the immune system, including NK cells. In this context, a major event is represented by the establishment of an immunosuppressive tumor microenvironment (TME) composed of stromal cells, myeloid-derived suppressor cells, tumor-associated macrophages, regulatory T cells and cancer cells themselves. The different immunoregulatory cells infiltrating the TME, through the release of several immunosuppressive molecules or by cell-to-cell interactions, cause an impairment of the recruitment of NK cells and other lymphocytes with effector functions. The different mechanisms by which stromal and tumor cells impair NK cell function have been particularly explored in adult solid tumors and, in less depth, investigated and discussed in a pediatric setting. In this review, we will compare pediatric and adult solid malignancies concerning the respective mechanisms of NK cell inhibition, highlighting novel key data in neuroblastoma and Wilms' tumor, two of the most frequent pediatric extracranial solid tumors. Indeed, both tumors are characterized by the presence of stromal cells acting through the release of immunosuppressive molecules. In addition, specific tumor cell subsets inhibit NK cell cytotoxic function by cell-to-cell contact mechanisms likely controlled by the transcriptional coactivator TAZ. These findings could lead to a more performant diagnostic approach and to the development of novel immunotherapeutic strategies targeting the identified cellular and molecular targets.

7.
Cancers (Basel) ; 13(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435455

RESUMO

The immune response plays a crucial defensive role in cancer growth and metastasis and is a promising target in different tumors. The role of the immune system in Wilm's Tumor (WT), a common pediatric renal malignancy, is still to be explored. The characterization of the immune environment in WT could allow the identification of new therapeutic strategies for targeting possible inhibitory mechanisms and/or lowering toxicity of the current treatments. In this study, we stabilized four WT primary cultures expressing either a blastematous (CD56+/CD133-) or an epithelial (CD56-/CD133+) phenotype and investigated their interactions with innate immune cells, namely NK cells and monocytes. We show that cytokine-activated NK cells efficiently kill WT cells. However, after co-culture with WT primary cells, NK cells displayed an impaired cytotoxic activity, decreased production of IFNγ and expression of CD107a, DNAM-1 and NKp30. Analysis of the effects of the interaction between WT cells and monocytes revealed their polarization towards alternatively activated macrophages (M2) that, in turn, further impaired NK cell functions. In conclusion, we show that both WT blastematous and epithelial components may contribute directly and indirectly to a tumor immunosuppressive microenvironment that is likely to play a role in tumor progression.

8.
Front Immunol ; 12: 803014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116033

RESUMO

Tumor microenvironment (TME) includes a wide variety of cell types and soluble factors capable of suppressing immune-responses. While the role of NK cells in TME has been analyzed, limited information is available on the presence and the effect of polymorphonuclear (PMN) myeloid-derived suppressor cells, (MDSC). Among the immunomodulatory cells present in TME, MDSC are potentially efficient in counteracting the anti-tumor activity of several effector cells. We show that PMN-MDSC are present in high numbers in the PB of patients with primary or metastatic lung tumor. Their frequency correlated with the overall survival of patients. In addition, it inversely correlated with low frequencies of NK cells both in the PB and in tumor lesions. Moreover, such NK cells displayed an impaired anti-tumor activity, even those isolated from PB. The compromised function of NK cells was consequent to their interaction with PMN-MDSC. Indeed, we show that the expression of major activating NK receptors, the NK cytolytic activity and the cytokine production were inhibited upon co-culture with PMN-MDSC through both cell-to-cell contact and soluble factors. In this context, we show that exosomes derived from PMN-MDSC are responsible of a significant immunosuppressive effect on NK cell-mediated anti-tumor activity. Our data may provide a novel useful tool to implement the tumor immunoscore. Indeed, the detection of PMN-MDSC in the PB may be of prognostic value, providing clues on the presence and extension of both adult and pediatric tumors and information on the efficacy not only of immune response but also of immunotherapy and, possibly, on the clinical outcome.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Contagem de Leucócitos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Biomarcadores , Comunicação Celular/imunologia , Comunicação Celular/fisiologia , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/imunologia
9.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33203664

RESUMO

Soluble interleukin (IL)-15 exists under two forms: as monomer (sIL-15) or as heterodimeric complex in association with sIL-15Rα (sIL-15/IL-15Rα). Both forms have been successfully tested in experimental tumor murine models and are currently undergoing investigation in phase I/II clinical trials. Despite more than 20 years research on IL-15, some controversial issues remain to be addressed. A first point concerns the detection of the sIL-15/IL-15Rα in plasma of healthy donors or patients with cancer and its biological significance. The second and third unsolved question regards the protumorigenic role of the IL-15/IL-15Rα complex in human cancer and the detrimental immunological consequences associated to prolonged exposure of natural killer (NK) cells to both forms of soluble IL-15, respectively. Data suggest that in vivo prolonged or repeated exposure to monomeric sIL-15 or the soluble complex may lead to NK hypo-responsiveness through the expansion of the CD8+/CD44+ T cell subset that would suppress NK cell functions. In vitro experiments indicate that soluble complex and monomeric IL-15 may cause NK hyporesponsiveness through a direct effect caused by their prolonged stimulation, suggesting that this mechanism could also be effective in vivo. Therefore, a better knowledge of IL-15 and a more appropriate use of both its soluble forms, in terms of concentrations and time of exposure, are essential in order to improve their therapeutic use. In cancer, the overproduction of sIL-15/IL-15Rα could represent a novel mechanism of immune escape. The soluble complex may act as a decoy cytokine unable to efficiently foster NK cells, or could induce NK hyporesponsiveness through an excessive and prolonged stimulation depending on the type of IL-15Rα isoforms associated. All these unsolved questions are not merely limited to the knowledge of IL-15 pathophysiology, but are crucial also for the therapeutic use of this cytokine. Therefore, in this review, we will discuss key unanswered issues on the heterogeneity and biological significance of IL-15 isoforms, analyzing both their cancer-related biological functions and their therapeutic implications.


Assuntos
Interleucina-15/imunologia , Neoplasias/genética , Animais , Humanos , Camundongos , Neoplasias/patologia
10.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244482

RESUMO

Skeletal muscle regeneration following injury depends on the ability of satellite cells (SCs) to proliferate, self-renew, and eventually differentiate. The factors that regulate the process of self-renewal are poorly understood. In this study we examined the role of PKCθ in SC self-renewal and differentiation. We show that PKCθ is expressed in SCs, and its active form is localized to the chromosomes, centrosomes, and midbody during mitosis. Lack of PKCθ promotes SC symmetric self-renewal division by regulating Pard3 polarity protein localization, without affecting the overall proliferation rate. Genetic ablation of PKCθ or its pharmacological inhibition in vivo did not affect SC number in healthy muscle. By contrast, after induction of muscle injury, lack or inhibition of PKCθ resulted in a significant expansion of the quiescent SC pool. Finally, we show that lack of PKCθ does not alter the inflammatory milieu after acute injury in muscle, suggesting that the enhanced self-renewal ability of SCs in PKCθ-/- mice is not due to an alteration in the inflammatory milieu. Together, these results suggest that PKCθ plays an important role in SC self-renewal by stimulating their expansion through symmetric division, and it may represent a promising target to manipulate satellite cell self-renewal in pathological conditions.


Assuntos
Proteína Quinase C-theta/genética , Proteína Quinase C-theta/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Cicatrização/genética , Cicatrização/fisiologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/metabolismo , Regeneração/fisiologia , Transcriptoma
11.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023816

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disease characterized by muscle wasting and chronic inflammation, leading to impaired satellite cells (SCs) function and exhaustion of their regenerative capacity. We previously showed that lack of PKCθ in mdx mice, a mouse model of DMD, reduces muscle wasting and inflammation, and improves muscle regeneration and performance at early stages of the disease. In this study, we show that muscle regeneration is boosted, and fibrosis reduced in mdxθ-/- mice, even at advanced stages of the disease. This phenotype was associated with a higher number of Pax7 positive cells in mdxθ-/- muscle compared with mdx muscle, during the progression of the disease. Moreover, the expression level of Pax7 and Notch1, the pivotal regulators of SCs self-renewal, were upregulated in SCs isolated from mdxθ-/- muscle compared with mdx derived SCs. Likewise, the expression of the Notch ligands Delta1 and Jagged1 was higher in mdxθ-/- muscle compared with mdx. The expression level of Delta1 and Jagged1 was also higher in PKCθ-/- muscle compared with WT muscle following acute injury. In addition, lack of PKCθ prolonged the survival and sustained the differentiation of transplanted myogenic progenitors. Overall, our results suggest that lack of PKCθ promotes muscle repair in dystrophic mice, supporting stem cells survival and maintenance through increased Delta-Notch signaling.


Assuntos
Cardiotoxinas/efeitos adversos , Músculo Esquelético/lesões , Distrofia Muscular de Duchenne/genética , Proteína Quinase C-theta/genética , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Fator de Transcrição PAX7/metabolismo , Receptor Notch1/metabolismo , Regeneração , Transdução de Sinais , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
12.
Front Immunol ; 9: 1533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061880

RESUMO

Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by inflammation of entheses and synovium, leading to joint erosions and new bone formation. It affects 10-30% of patients with psoriasis, and has an estimated prevalence of approximately 1%. PsA is considered to be primarily an autoimmune disease, driven by autoreactive T cells directed against autoantigens present in the skin and in the joints. However, an autoinflammatory origin has recently been proposed. Long noncoding RNAs (lncRNAs) are RNAs more than 200 nucleotides in length that do not encode proteins. LncRNAs play important roles in several biological processes, including chromatin remodeling, transcription control, and post-transcriptional processing. Several studies have shown that lncRNAs are expressed in a stage-specific or lineage-specific manner in immune cells that have a role in the development, activation, and effector functions of immune cells. LncRNAs are thought to play a role in several diseases, including autoimmune disorders. Indeed, a few lncRNAs have been identified in systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. Although several high-throughput studies have been performed to identify lncRNAs, their biological and pathological relevance are still unknown, and most transcriptome studies in autoimmune diseases have only assessed protein-coding transcripts. No data are currently available on lncRNAs in PsA. Therefore, by microarray analysis, we have investigated the expression profiles of more than 50,000 human lncRNAs in blood samples from PsA patients and healthy controls using Human Clariom D Affymetrix chips, suitable to detect rare and low-expressing transcripts otherwise unnoticed by common sequencing methodologies. Network analysis identified lncRNAs targeting highly connected genes in the PsA transcriptome. Such genes are involved in molecular pathways crucial for PsA pathogenesis, including immune response, glycolipid metabolism, bone remodeling, type 1 interferon, wingless related integration site, and tumor necrosis factor signaling. Selected lncRNAs were validated by RT-PCR in an expanded cohort of patients. Moreover, modulated genes belonging to meaningful pathways were validated by RT-PCR in PsA PBMCs and/or by ELISA in PsA sera. The findings indicate that lncRNAs are involved in PsA pathogenesis by regulating both microRNAs and genes and open new avenues for the identification of new biomarkers and therapeutical targets.

13.
Biomed Res Int ; 2018: 7305380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850558

RESUMO

BACKGROUND: Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by bone erosions and new bone formation. MicroRNAs (miRNAs) are key regulators of the immune responses. Differential expression of miRNAs has been reported in several inflammatory autoimmune diseases; however, their role in PsA is not fully elucidated. We aimed to identify miRNA expression signatures associated with PsA and to investigate their potential implication in the disease pathogenesis. METHODS: miRNA microarray was performed in blood cells of PsA patients and healthy controls. miRNA pathway analyses were performed and the global miRNA profiling was combined with transcriptome data in PsA. Deregulation of selected miRNAs was validated by real-time PCR. RESULTS: We identified specific miRNA signatures associated with PsA patients with active disease. These miRNAs target pathways relevant in PsA, such as TNF, MAPK, and WNT signaling cascades. Network analysis revealed several miRNAs regulating highly connected genes within the PsA transcriptome. miR-126-3p was the most downregulated miRNA in active patients. Noteworthy, miR-126 overexpression induced a decreased expression of genes implicated in PsA. CONCLUSIONS: This study sheds light on some epigenetic aspects of PsA identifying specific miRNAs, which may represent promising candidates as biomarkers and/or for the design of novel therapeutic strategies in PsA.


Assuntos
Artrite Psoriásica/genética , Artrite Psoriásica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Artrite Psoriásica/sangue , Biomarcadores/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Células Jurkat , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Transdução de Sinais/genética , Transcriptoma/genética
14.
J Immunol Res ; 2018: 4246965, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850627

RESUMO

Behçet disease (BD) is a chronic inflammatory multisystem disease characterized by oral and genital ulcers, uveitis, and skin lesions. Disease etiopathogenesis is still unclear. We aim to elucidate some aspects of BD pathogenesis and to identify specific gene signatures in peripheral blood cells (PBCs) of patients with active disease using novel gene expression and network analysis. 179 genes were modulated in 10 PBCs of BD patients when compared to 10 healthy donors. Among differentially expressed genes the top enriched gene function was immune response, characterized by upregulation of Th17-related genes and type I interferon- (IFN-) inducible genes. Th17 polarization was confirmed by FACS analysis. The transcriptome identified gene classes (vascular damage, blood coagulation, and inflammation) involved in the pathogenesis of the typical features of BD. Following network analysis, the resulting interactome showed 5 highly connected regions (clusters) enriched in T and B cell activation pathways and 2 clusters enriched in type I IFN, JAK/STAT, and TLR signaling pathways, all implicated in autoimmune diseases. We report here the first combined analysis of the transcriptome and interactome in PBCs of BD patients in the active stage of disease. This approach generates useful insights in disease pathogenesis and suggests an autoimmune component in the origin of BD.


Assuntos
Linfócitos B/fisiologia , Síndrome de Behçet/genética , Vasos Sanguíneos/fisiologia , Células Th17/fisiologia , Autoimunidade/genética , Coagulação Sanguínea/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Janus Quinases/metabolismo , Terapia de Alvo Molecular , Mapas de Interação de Proteínas , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Transcriptoma/genética
15.
J Immunol Res ; 2018: 2405150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854829

RESUMO

BACKGROUND: Behçet's disease (BD) is a chronic inflammatory multisystem disease characterized by oral and genital ulcers, uveitis, and skin lesions. MicroRNAs (miRNAs) are key regulators of immune responses. Differential expression of miRNAs has been reported in several inflammatory autoimmune diseases; however, their role in BD is not fully elucidated. We aimed to identify miRNA expression signatures associated with BD and to investigate their potential implication in the disease pathogenesis. METHODS: miRNA microarray analysis was performed in blood cells of BD patients and healthy controls. miRNA expression profiles were analyzed using Affymetrix arrays with a comprehensive coverage of miRNA sequences. Pathway analyses were performed, and the global miRNA profiling was combined with transcriptoma data in BD. Deregulation of selected miRNAs was validated by real-time PCR. RESULTS: We identified specific miRNA signatures associated with BD patients with active disease. These miRNAs target pathways relevant in BD, such as TNF, IFN gamma, and VEGF-VEGFR signaling cascades. Network analysis revealed several miRNAs regulating highly connected genes within the BD transcriptoma. CONCLUSIONS: The combined analysis of deregulated miRNAs and BD transcriptome sheds light on some epigenetic aspects of BD identifying specific miRNAs, which may represent promising candidates as biomarkers and/or for the design of novel therapeutic strategies in BD.


Assuntos
Síndrome de Behçet/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Feminino , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Masculino , Análise em Microsséries , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Immunol Res ; 2018: 9419204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736406

RESUMO

Rotavirus is a double-stranded RNA virus belonging to the family of Reoviridae. The virus is transmitted by the faecal-oral route and infects intestinal cells causing gastroenteritis. Rotaviruses are the main cause of severe acute diarrhoea in children less than 5 years of age worldwide. In our previous work we have shown a link between rotavirus infection and celiac disease. Nonceliac gluten sensitivity (NCGS) is emerging as new clinical entity lacking specific diagnostic biomarkers which has been reported to occur in 6-10% of the population. Clinical manifestations include gastrointestinal and/or extraintestinal symptoms which recede with gluten withdrawal. The pathogenesis of the disease is still unknown. Aim of this work is to clarify some aspects of its pathogenesis using a gene array approach. Our results suggest that NCGS may have an autoimmune origin. This is based both on gene expression data (i.e., TH17-interferon signatures) and on the presence of TH17 cells and of serological markers of autoimmunity in NCGS. Our results also indicate a possible involvement of rotavirus infection in the pathogenesis of nonceliac gluten sensitivity similarly to what we have previously shown in celiac disease.


Assuntos
Doenças Autoimunes/imunologia , Doença Celíaca/imunologia , Glutens/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Células Th17/imunologia , Adulto , Autoanticorpos/sangue , Autoimunidade , Pré-Escolar , Diarreia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino
17.
Front Immunol ; 9: 449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559981

RESUMO

Systemic sclerosis (SSc) is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs) derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation) include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs), are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to healthy controls. Our findings indicate the presence of modulated genes and miRNAs that can play a predisposing role in the development of malignancies in SSc and are important for a better risk stratification of patients and for the identification of a better individualized precision medicine strategy.


Assuntos
Carcinogênese/genética , Inflamação/genética , Leucócitos Mononucleares/imunologia , MicroRNAs/genética , Escleroderma Sistêmico/genética , Adulto , Idoso , Apoptose , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas
18.
J Pathol ; 244(3): 323-333, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29214629

RESUMO

Chronic muscle inflammation is a critical feature of Duchenne muscular dystrophy and contributes to muscle fibre injury and disease progression. Although previous studies have implicated T cells in the development of muscle fibrosis, little is known about their role during the early stages of muscular dystrophy. Here, we show that T cells are among the first cells to infiltrate mdx mouse dystrophic muscle, prior to the onset of necrosis, suggesting an important role in early disease pathogenesis. Based on our comprehensive analysis of the kinetics of the immune response, we further identify the early pre-necrotic stage of muscular dystrophy as the relevant time frame for T-cell-based interventions. We focused on protein kinase C θ (PKCθ, encoded by Prkcq), a critical regulator of effector T-cell activation, as a potential target to inhibit T-cell activity in dystrophic muscle. Lack of PKCθ not only reduced the frequency and number of infiltrating T cells but also led to quantitative and qualitative changes in the innate immune cell infiltrate in mdx/Prkcq-/- muscle. These changes were due to the inhibition of T cells, since PKCθ was necessary for T-cell but not for myeloid cell infiltration of acutely injured muscle. Targeting T cells with a PKCθ inhibitor early in the disease process markedly diminished the size of the inflammatory cell infiltrate and resulted in reduced muscle damage. Moreover, diaphragm necrosis and fibrosis were also reduced following treatment. Overall, our findings identify the early T-cell infiltrate as a therapeutic target and highlight the potential of PKCθ inhibition as a therapeutic approach to muscular dystrophy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Diafragma/efeitos dos fármacos , Distrofia Muscular Animal/prevenção & controle , Proteína Quinase C-theta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Diafragma/enzimologia , Diafragma/imunologia , Diafragma/patologia , Modelos Animais de Doenças , Fibrose , Imunidade Inata/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/enzimologia , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/patologia , Necrose , Proteína Quinase C-theta/deficiência , Proteína Quinase C-theta/genética , Proteína Quinase C-theta/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/enzimologia , Linfócitos T/imunologia , Fatores de Tempo
19.
Biochem Soc Trans ; 42(6): 1550-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399569

RESUMO

Protein kinase Cθ (PKCθ) is a member of the novel calcium-independent PKC family, with a relatively selective tissue distribution. Most studies have focused on its unique role in T-lymphocyte activation and suggest that inhibition of PKCθ could represent a novel therapeutic approach in the treatment of chronic inflammation, autoimmunity and allograft rejection. However, considering that PKCθ is also expressed in other cell types, including skeletal muscle cells, it is important to understand its function in different tissues before proposing it as a molecular target for the treatment of immune-mediated diseases. A number of studies have highlighted the role of PKCθ in mediating several intracellular pathways, regulating muscle cell development, homoeostasis and remodelling, although a comprehensive picture is still lacking. Moreover, we recently showed that lack of PKCθ in a mouse model of Duchenne muscular dystrophy (DMD) ameliorates the progression of the disease. In the present article, we review new developments in our understanding of the involvement of PKCθ in intracellular mechanisms regulating skeletal muscle development, growth and maintenance under physiological conditions and recent advances showing a hitherto unrecognized role of PKCθ in promoting muscular dystrophy.


Assuntos
Isoenzimas/metabolismo , Músculo Esquelético/enzimologia , Doenças Musculares/enzimologia , Proteína Quinase C/metabolismo , Homeostase , Humanos , Proteína Quinase C-theta
20.
Mol Biol Cell ; 22(8): 1409-19, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21346196

RESUMO

Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKC, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKC is strongly up-regulated following freeze injury-induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKC knockout and muscle-specific PKC dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKC mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKC mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and ß1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKC in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKC-null myoblasts. We thus propose that PKC signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.


Assuntos
Caveolina 3/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cadeias beta de Integrinas/metabolismo , Mioblastos/metabolismo , Proteína Quinase C-delta , Transdução de Sinais/genética , Células-Tronco/metabolismo , Animais , Caveolina 3/genética , Comunicação Celular , Técnicas de Cultura de Células , Diferenciação Celular , Fusão Celular , Células Cultivadas , Proteína-Tirosina Quinases de Adesão Focal/genética , Adesões Focais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Cadeias beta de Integrinas/genética , Masculino , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Miogenina/genética , Miogenina/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fosforilação , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Regeneração , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...